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Introduction



Environmental demogenetics

Environmental demogenetics aims to analyze geographic patterns of
genetic diversity to inform the influence of environment on
demography.

1. what data 7

2. how to formalize these processes (what model)?

3. how to extract information from data (what inference method)?

4

. how to implement the method (what tools)?



Example of a spatial genetic dataset

Vespa velutina nigritorax (yellow-legged hornet) invasion in Europe.

first encountered in South-West France in 2004

fast expansion

economical/ecological impact (honey bee predator)

84 females genotyped for 22 SSR loci in 2008
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Model summary
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The main challenges are:

e chose submodels (model selection)

e estimate parameters from genetic data (statistical inference)



Inferential method: Approximate Bayesian Computation

Simulation/reject algorithm:

e sample parameters in a prior distribution: 6’ ~ p(6)
e simulate data from the model: y’ ~ p(y|6’)
e weigh (0, y’) as a function of the distance ||y’ — Yops]|

density

density

What tools for spatially explicit simulations of gene flow within landscapes?




Simulation tools, see Yannic et al. (2020)

Program Simulator Level Lg. Reference
Splatche3 Backward | Population | C++ Currat et al. (2019)
PhyloGeoSim | Backward | Population | Java Dellicour (2013)
IBDsim Backward | Population C Leblois et al. (2009)
SLIM3 Forward | Individual | C++ | Haller and Messer (2019)

There is an abundance of simulation programs, but no library:

C++ Library

egglib-cpp is the underlying C++ library of EggLib. It was egg lib. e ggwrapper
designed with the aim of improving performance at the expense
of safety and intuitive design. Therefore it might be difficult to
use directly. The complete contents are listed below:

C++ library--direct use is strongly discouraged!

C Library

The low-level code for msy e is written in C, and is structured as a standalone library. This code is
all contained in the directory. Although the code is structured as a library, it is not intended to
be used outside of the msprime project! The interfaces at the C level change considerably over time,

and are deliberately undocumented.




The no-library-available game

1. If your biological model fits the assumptions of an existing
simulation program x, then use x and win.

2. If your biological model presents important deviations from x, then
used x anyway and win.

3. If your biological model present critical deviations from x, then a
new progam y is required. Since developing y is too time
consuming, go back to 2 or forfeit.



The library-available game

1. If your biological model fits the assumptions of an existing
simulation program x, then use x and win.
2. If not, use the library to assemble simulation components as you see

fit into a program and win.



Creating a new coalescence-based library

OLECULAR ECO Y

RESOURCES

RESOURCE ARTICLE = (& Free Access

The Quetzal Coalescence template library: A C++ programmers
resource for integrating distributional, demographic and
coalescent models

Arnaud Becheler @, Camille Coron, Stéphane Dupas

Programming choices for QuetzalCoal TL:

e C++ for a good compromise between design and performances

e Give as much information as possible to the compiler to make the
code faster/safer

e Large use of generic programming (templates, metaprogramming)

e Focus on modularity and user experience



Using Quetzal for an Australian
lizard: demonstration




Heterogeneous landscape

e Landscape is discretized in n

demes (grid cells).

e Let be L = 1 environmental
variables (suitability derived

from a niche model).

quetzal code:

string path = "suitability.tiff";

using landscape_t = DiscreteLandscape<string ,int >;
landscape_t land( {{"suitability”, path}},{0});

// auto s = land[" suitability"]; // — callable s(x,t)

// For temporal heterogeneity:
// land ({{"s1”, pathl},{"s2",6path2}},{0,—1000});



Demography initialization

The ancestral population is a Wright-Fisher of N4 haploid individuals

Very ancient demography assumed non-spatial.

At time tg, Ny individuals are introduced in deme xg.

The following history is then spatially explicit.

quetzal code:

using core_t = SpatiallyExplicit <coord_t, time_t,
demographic_policy ,
coalescence_policy >;

core_t core(x-0, t-0, N.O);

core.ancestral _Wright_Fisher_N(N_.0);
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Demographic growth

Croissance démographique pour K = 500

e r: growth rate, constant

e k: carrying capacity, g -

function of suitability g |

Génération

Quetzal code:

literal_factory <coord_t, time_t> lit;
auto r = lit( 2.0 ); // —> callable r(x,t)
// auto r = lit( options["r"].as<double>() );
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Demographic growth

Carrying capacity:

e scaled by the suitability value on continental cells
e null in ocean cells "most of the time", but draft dispersal possible

Quetzal code:

auto s = land["suitability”]; // — callable s(x,t)
auto K = [&gen, s] // —> callable K(x,t)
(coord_type const& x, time_type)

{

// if ocean cell:

return 0 with proba 0.9, or 1
// if continental cell:

return 100xs(x,t)

s
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Demographic growth

Carrying capacity:
e scaled by the suitability value on continental cells

e null in ocean cells "most of the time”, but draft dispersal possible

Quetzal code:

if( s(x,0) <= 0.001){ //ocean cell
std:: bernoulli_distribution dist (0.1);
return dist(gen) ? 1 : 0;

telse{ // continental cell
return 100xs(x,0);
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Demographic growth

Number of children: N ~ Poisson(g(x, t))

: -+
Logistic growth: g | XxN — R

K(x,t)
Quetzal code:

auto g = Nx(lit(1)+r)/(lit(1)+((r+N)/K));

auto children = [g](auto& gen, auto x, auto t){

std :: poisson_distribution <unsigned int> dist(g(x,t));
return dist (gen);

s
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number of effective emigrants going out of deme x: ML = e x NI
set of x neighbours (North, South, East, West): V,
number of individuals going from x to y € V, at time t: d>§’y

sampling emigrants destination in a multinomial law defines ¢§‘y:

(cbi,y)yevx ~ ./\/l(/(/;, (Pxy)y) -

¢f<wgm;4>¢t
)

Quetzal code:

using demographic_policy = strategy :: mass_based;
auto neighbors = make_neighboring_cells_functor(land);;s



The term (py, ), denotes the parameters of the multinomial law, giving
for an emigrant in x its probability to go to y € V,:

p  XxV, —~ [0,1]
1
(x,y) = e T
where h is a function of the suitability.

Quetzal code:

auto h = [s](auto x){
if(s(x,0) <= 0.5) {return 0.99;} // ocean or deserts

else return 1.0 — s(x, 0);
+
kernel = make_light_neighboring_migration (
emigrant_rate, h, neighbors
)
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Demographic process
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Figure 1: Click.

Quetzal code:

core.expand_demography (2021,

Population size N :
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Figure 2: Click.
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kernel ,
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Genetic process

Let be a set S de n gene copies sampled at time 5. Coalescent trees are
then simulated backward in time, from t; to tg.
Knowing that a child node c is in deme j € X, the probability for its

parents p to be in i € X is a function of the migration flow ®:
t

P(pei\eej)ziq)i’j
2o B g
Knowing that the parent nodes p; (p2) of the nodes ¢; (c) are in i at
time t, the probability for the children to coalesce in the same parent is:
Plpr=p2 | pr€i,p2€i)=1/N}
Quetzal code:

using coal_policy=distance_to_parent_leaf_name <...>;
core.coalesce_to_mrca <>(
sample, 2021, get_position , get_.name, gen);
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Conclusion




e Very flexible resource for demographic processes
e Easy to couple to coalescence simulators

e Next big step is to couple it to Tskit library (Kelleher et al., 2014)
for efficient generation of correlated trees.

e Open source on github

Thank you for your attention !
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DECRYPT




Simulation pipeline

Demogenetic
Configuration .
landscape files main.cpp || Output
growth/dispersal processes trees
sampling process IMAP file || pyvolve

Sequences generation configuration = BPP
trees, sequence length, Output
tree branches rescaling factor sequences

Species delimitation method configuration == Output

priors distributions dependent on the demogenelic configuration
sequences file number of species

IMAP file posterior probabilities

Figure 3: Pipeline to simulate coalescence trees conditioned on a complex
spatially explicit demographic history and sampling schemes using Quetzal
(Becheler et al., 2019), then simulating sequences along the trees using
Pyvolve (Spielman and Wilke, 2015) and delimiting species using BPP (Flouri
et al., 2018)
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Figure 4: Spatial interpolation of p. the probability to detect 2 species in a
population expanding in an heterogeneous landscape under the MSC when the
sequences sample is constructed at time t; by two 2D gaussian sampling
processes centered on (i) the population origin xo (red cross), and (ii) on a
random coordinate x ( with N(x, ts) > 30 to avoid inconsistent sampling in
very low density areas).
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