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Why heterogeneous landscapes?

Heterogeneity with 2 dimensions:

• spatial autocorrelation: areas that are close together tend to have

similar values (e.g., elevation)

• temporal autocorrelation: events happening in quick successions

tend to be more similar than events happening after a longer

separation (e.g., climate changes, vegetation dynamics)

This can have profound effects on the different scales and levels of

biodiversity.
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Why heterogeneous landscapes?

Example: how to explain the biodiversity of campos rupestres?

• Higher elevation (above 900m)

• Poor rocky soils

• Disjuncted mosaic of sky-islands

• 15% of Brazil plants species

but ... 1% of its area!

• Climatically buffered (stable)

Can we infer past demographic pulses based on genetic data?

Tournebize et al. (2017); He et al. (2017); Estoup et al. (2010)
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https://github.com/Becheler/quetzal-EGGS/blob/media/animation_EGG2.gif


Why genetic data?

• The past is long gone: historical data about past distribution are

(at best) scarce and biased.

• The present may be unreachable: some ecological/evolutionary

processes are not easily measured, even in a lab (e.g., the dispersal

of a mosquito).

• Promise of demogenetics: signals of past demographic events may

still be conserved in neutral areas of the genome, under the form of

patterns and distribution of genetic diversity .

How to use such an indirect source of information to gain knowledge

about distal processes?
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Environmental demogenetics

Environmental demogenetics aims to analyze geographic patterns of

genetic diversity to inform the influence of environment on

demography.

1. what data ? What scales?

2. how to formalize these processes (what model)?

3. how to extract information from data (what inference method)?

4. how to implement the method (what tools)?
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What data? What scales?

Vespa velutina nigritorax (yellow-legged hornet) invasion in Europe.

• first encountered in South-West France in 2004

• fast expansion

• economical/ecological impact (honey bee predator)

• 84 females genotyped for 22 SSR loci in 2008
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What model(s)?

The main challenges are:

• chose submodels (model selection): technical challenges

• estimate parameters from genetic data (statistical inference)
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What inference method?

• You have some knowledge or intuition a priori on parameters:

Bayesian framework

• You can’t do much mathematical work with the model: intractable

likelihood

• You can’t describe

mathematically parameters of

interest as a function of

observed data.

• But you always can describe it

programatically using

simulations!

Use Approximate Bayesian Computation to explore the parameter space
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https://github.com/Becheler/sandbox/blob/main/ABC_prior_balayage.gif


How do you filter simulations?

You can use a (very basic) simulation/reject algorithm:

• sample parameters in a prior

distribution: θ′ ∼ p(θ)

• simulate data from the model:

y ′ ∼ p(y |θ′)
• weigh (θ′, y ′) as a function of

the distance ||y ′ − yobs ||

Wait ... you said distance?
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https://github.com/Becheler/sandbox/blob/main/ABC_accept_reject.gif


How do you define a distance?

Genetic data are:

• heterogeneous, with missing data

• highly multidimensional (location, individuals, loci...)

• distances in high dimension are weeeeird (Aggarwal et al., 2001)

In demogenetics you generally:

• compute summary statistics

• FST, heterozygosity etc

• using Arlsumstat Excoffier et al.

(2005)

What do I gain form that, in terms of knowledge?
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https://github.com/Becheler/sandbox/blob/main/ABC_distributions.gif


Posterior distribution estimation

As ABC algorithm progress

• density of accepted parameters

increases in a region (hopefully)

• posterior density converges

towards a target (hopefully)

• you updated your knowledge by

switching probability mass from

unlikely regions to more likely

regions of the parameter space

• you can come up with point

estimates (mean, median ...)

OK, but What simulators do I use?
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https://github.com/Becheler/sandbox/blob/main/ABC_posterior_convergence.gif


Simulation tools, see Yannic et al. (2020)

Program Simulator Level Lg. Reference

Splatche3 Backward Population C++ Currat et al. (2019)

PhyloGeoSim Backward Population Java Dellicour (2013)

IBDsim Backward Population C Leblois et al. (2009)

SLIM3 Forward Individual C++ Haller and Messer (2019)

There is an abundance of simulation programs.

But sometimes it is impossible to get the desired behavior just with

configuration files.

What if you want a different dispersal kernel ?

Our community needs to refine the granularity of software resources.
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Where do I think we are going?



We need more simulation models, and we need them quickly.

There are too much variation in ecological processes to hope for a

one-fit-all tool. We need to be able to increase the complexity of

simulation models without losing years coding them.

This is being eased by the emergence of new domain-specific

programming tools (libraries) that we can reuse and combine:

• the Quetzal framework (Becheler et al., 2019): good for

demographic aspects, but currently assumes independent

markers/trees

• Increasing density of markers has statistical impacts.

• TSKIT (Kelleher et al., 2018): efficient simulation of correlated

trees along the genome

Can we interface these resources?
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Quetzal

Programming choices for QuetzalCoalTL:

• C++ for a good compromise between design and performances

• Give as much information as possible to the compiler to make the

code faster/safer

• Large use of generic programming (templates, metaprogramming)

• Focus on modularity and user experience
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We need easier workflows, that can run anywhere at scale

It is still very difficult to understand, gather, install, configure, run the

required resources. We need to decrease/hide the complexity of

simulation-based inference frameworks.

This is being eased by new recent progresses:

• Random Forest ABC (Raynal et al., 2019): bypass calibration,

alleviate computational burden, standardize statistical workflow

• Docker: allows to package and run anywhere entire environments.

Simplifies distribution and dependency management of scientific

softwares.

• Singularity (Kurtzer et al., 2017): makes containers available for

High Throughput Computing

• OpenScienceGrid: (Pordes et al., 2007): large scale computations

on very heterogeneous grids of nodes.

Can we use these resources to build entire reproducible workflows?
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Thank you!

Thank you to Cecilia Fiorini for inviting me, to the NSF for funding me,

to the Open Science Grid school 2021 organizers for forming me, and to

the Lacey Knowles lab!

Keep targetting!
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